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Abstract 

The use of quantitative gene expression analysis for the diagnosis, prognosis, and 

monitoring of disease requires the ability to distinguish pathophysiological changes from 

natural variations. To characterize these variations in apparently healthy subjects, 

quantitative real-time PCR was used to measure various immune response genes in 

whole blood collected from blood bank donors. In a single-time-point study of 131 

donors, with 48 target genes, 43 were consistently expressed and, 34 followed 

approximately log-normal distribution.   Most transcripts showed a limited dynamic range 

of expression across subjects.  Specifically, 36 genes had standard deviations (SD) of 

0.44 to 0.79 cycle threshold (CT ) units, corresponding to less than a 3-fold variation in 

expression.   Separately, a longitudinal study of 8 healthy individuals demonstrated a 

total dynamic range (> 2 standard error units) of 2- to 4-fold in most genes. In contrast, a 

study of whole blood gene expression in 6 volunteers injected with LPS showed 15 

genes changing in expression 10- to 90-fold within 2 to 5 hours and returning to within 

normal range within 21 hours.  This work demonstrates: (1) the dynamic range of 

expression of many immune response genes is limited among healthy subjects; (2) 

expression levels for most genes analyzed are approximately log-normally distributed; 

and (3) individuals exposed to an infusion of bacterial endotoxin, lipopolysccharide 

(LPS), show gene expression profiles that can be readily distinguished from those of a 

healthy population.  These results suggest that normal reference ranges can be 

established for gene expression assays, providing critical standards for the diagnosis 

and management of disease. 



Introduction 

Recent developments in gene and protein expression analysis technology have 

suggested that gene expression is a key indicator of an individual’s pathophysiologic 

status (1, 2, 3, 4).  Consequently, clinical application of gene expression technology will 

vastly improve upon the current approaches for monitoring health and disease.  

Compelling associations between gene expression and disease have been 

demonstrated in many studies ranging from inflammatory disease to cancer.  For 

instance, studies have pointed to abnormal gene expression in peripheral blood 

mononuclear cells in lupus patients compared to healthy controls (5,6). Other studies 

have found differences in gene expression patterns between cancerous liver or 

pancreatic tissue and non-tumor liver and pancreatic tissues (7,8).  Additionally, gene 

expression profiling of breast tumor biopsy tissue correlated with therapeutic response to 

treatment (9).  Results from these studies demonstrate that measurements of gene 

expression can be used in the diagnosis and monitoring of disease.  However, a key 

requirement for clinical application of gene expression technology is distinguishing 

between natural variations in gene expression among healthy subjects and changes 

associated with a disease condition.  The establishment of a normal range of expression 

for a particular population is required as a “reference range” (10).   

 

Immune function is controlled by a network of molecular and cellular pathways. It is well 

recognized that suppressed immune responses (e.g., immunosuppressive therapies and 

AIDS) or excessive responses (e.g., acute respiratory distress syndrome and 

autoimmunity) can contribute to disease. Thus, homeostatic control and tight regulation 

of responses are fundamental characteristics of the immune system.  For example, in 

the absence of disease, body temperature remains relatively constant within an 



individual, suggesting that the body strives to hold its temperature close to a defended 

set point.  During a response to infection, the inflammatory cytokines interleukin 1, 

interleukin 6, and tumor necrosis factor are released into the blood and bind with 

receptors in the hypothalamus resulting in fever (11). However, immune cells also 

manufacture and release factors, such as interleukin 1 receptor antagonist and 

interleukin 10, that counteract the effects of pro-inflammatory cytokines and reduce body 

temperature (12,13). As a result, body temperature rises only moderately during many 

fever episodes, and returns to its previous set point upon clearance of the infection. This 

and other evidence (14) imply that inflammatory/immune genes may be tightly regulated.  

It is further hypothesized that immune system homeostasis would be reflected in a 

narrow range of expression levels or set points for key molecules in these pathways 

among healthy subjects. 

In certain gene expression studies, reproducible patterns in subsets of genes have been 

noted in normal tissues (15-18). The majority of these studies have used microarrays to 

explore the patterns of expression in isolated blood cell fractions (15, 18) or other target 

tissues, including retina (16) and skin (17). Some studies (16, 19) have used replicate 

arrays to assess the relative contributions of technical and biological factors to the 

overall variation in measurement values. The results show inter-individual variation for 

gene expression, as well as variation over time within an individual. In addition, gene 

expression can be sensitive to sources of technical variability, such as time after 

phlebotomy and method of RNA isolation (20-23). Even within a platform, such as 

microarrays, considerable divergence is reported across various platforms (24).   

In recent years, quantitative real-time (QRT) PCR has emerged as an effective and 

reproducible tool for transcript analysis (25). It measures relative abundances through 

PCR-based synthesis of target gene amplicons and activation of target specific 



fluorescent probes. The amount of fluorescence generated during the exponential 

amplification phase provides robust comparative abundance measurements for different 

amplicons in the same or different wells (25).  Whole blood contains representative 

populations of all the mature cells of the immune system as well as secretory proteins 

associated with cellular communications (26).  The earliest observable changes of 

cellular immune activity are altered levels of gene expression within the various immune 

cell types (27). Therefore, quantitative RT-PCR (QRT-PCR) can be a very effective 

technology for reproducibly quantifying gene expression in whole blood.  

In studies reported here, we explored the variation among apparently healthy blood bank 

donors in the expression of a set of genes involved in immune responses.  QRT-PCR 

was used to measure immune-related gene expression in whole blood samples, using 

procedures designed to sustain a high level of precision (repeatability and 

reproducibility). We tested the observed distribution of values to determine if it was 

consistent with sampling from a log-normal distribution, as has been asserted for many 

genes (28, 29), and computed maximum likelihood estimates for the parameters of this 

distribution. We used statistical models to estimate the contributions of gender, age, and 

ethnicity to the overall differences in expression among subjects. By performing replicate 

measurements on longitudinal samples from a group of 8 donors, we computed relative 

proportions of variance arising from technical, temporal, and inter-subject variability. 

Finally, to obtain limits for the dynamic range of expression achievable with a strong 

inflammatory stimulus, we performed time course measurements for several immune 

response genes in a group of healthy volunteers challenged with an infusion of the 

bacterial endotoxin, lipopolysaccharide (LPS).  

 



Materials and Methods 

Donor Selection 
Single time point blood samples from 131 blood donors satisfying American Red Cross 

blood bank standards (30) were obtained from three individual donor centers operated 

by Bonfils Blood Center, Denver, CO, USA. The samples were drawn on three different 

days over a three month period. Subject ages ranged from 22 to 69 years, with a median 

age of 44 years; age was not recorded for 61 subjects. Females (N=64) and males 

(N=67) were represented in about equal numbers. Ethnicity was reported as white/non-

Hispanic for 109 subjects, as Hispanic for 19, as African-American for 2, and 

Asian/Pacific Islander for 1.  No subjects in this study showed overt signs of disease that 

would make them ineligible to donate blood under American Red Cross standards.  

However, because we cannot rule out undetected disease in the subjects, we refer to 

them as apparently healthy (18).   

In addition, longitudinal samples were drawn from 8 volunteers (3 female, 5 male, age 

range 23-50 years) from the Denver area. Samples were collected from these donors 

approximately once per month for six to eight months, yielding a total of 58 samples.  

Samples from the blood donor subjects were collected under Western Institutional 

Review Board Study Number 20010324.  The studies were also reviewed by the 

Lawrence Livermore National Laboratory Institutional Review Board.  Written informed 

consent was obtained from all volunteers. 

In a separate study, six healthy volunteers were injected intravenously over 1 minute 

with a single dose (30 units/kg) of Gram-negative bacterial lipopolysaccharide (LPS), 

according to an approved protocol at Guys Hospital, London, UK.  Blood samples were 

drawn and assayed before the LPS injection (0h), 2h and 5h after LPS injection.  Three 

of six subjects were additionally drawn and assayed 21h after LPS injection.   Subjects 



were adult male volunteers that signed an informed consent form.  Medical history, 

physical examination, routine laboratory examination and electrocardiogram were all 

normal. Subjects did not use any medication or have any significant illness within 8-

weeks of the study.   

Sample handling, purification of RNA and preparation of cDNA 
Blood was collected from study subjects by standard phlebotomy methods using a 21- 

gauge butterfly needle and PAXgene™ Blood RNA Tubes (QIAGEN, no. 762115, 

Valencia, CA) to stabilize messenger RNA (mRNA) against degradation and prevent 

induction of new mRNA expression (23).  Samples were gently mixed by inversion, and 

sat at room temperature for 2-24 h to ensure complete nucleic acid stabilization.  

Samples were then frozen at –70°C, and batch shipped on dry ice in compliance with 

IATA shipping regulations.  

Total RNA from PAXgene™ Blood RNA samples was extracted within 30 days of 

collection using the PAXgene™ Blood RNA Kit (QIAGEN, no. 762134). RNA samples 

were treated with RNase-Free DNase I (QIAGEN, no. 79254) for digestion of 

contaminating genomic DNA, using manufacturer recommended protocols during the 

purification process.  Purified RNA samples were placed at –80°C for long term storage.   

First strand cDNA was synthesized with random hexamer primers, using TaqMan® 

Reverse Transcription reagents (Applied Biosystems, no. N808-0234).  Approximately 

250 ng of RNA was added to a prepared reverse transcription reagent mixture consisting 

of PCR Buffer II, 1X; MgCl2, 5.5 mM; random hexamers, 2.5 µM; dNTP blend, 2 mM; 

RNase Inhibitor, 40 U; and MultiScribe™ Reverse Transcriptase, 125U.  Samples were 

incubated at ambient temperature for 10 minutes with subsequent incubation at 37°C for 

60 minutes.  Following the 37°C incubation, samples were incubated at 90°C for 10 

minutes and immediately chilled on ice.  Newly synthesized cDNA samples were then 



placed at –80°C for storage.  Each cDNA sample was quality control tested for RNA 

quantity and quality prior to QRT-PCR analysis of target genes using quantitative PCR 

analysis (QPCR; ABI Prism® 7700 Sequence Detection System, Applied Biosystems, 

Foster City, CA) of the 18S rRNA and β-actin.  

QRT-PCR analysis of target genes 

Primer/probe reagents were custom designed to achieve three performance criteria: 1) 

single gene specificity of amplification as tested by gel electrophoresis; 2) dilutional 

linearity of amplification performance over 2 orders of magnitude; and 3) optimal 

amplification efficiency of 100±6%, to yield a two-fold change in transcript per CT unit  

(31).  Primer/probe sets were designed to span 90-120 base pairs, optimized for robust 

amplification and specificity, minimization of secondary hybridization, and consistent 

performance. Quality control testing of reagents and manufactured plates ensure that 

amplification specificity and efficiency remain within established metrics during storage 

and new synthesis of nucleotides. 

Amplification specificity was tested by QRT-PCR with a custom cDNA standard template 

of induced whole blood and cell lines.  Specificity was determined by the size, number, 

and DNA sequence of the amplified product.  The size and number of amplified products 

was determined by agarose gel electrophoresis.  Amplified products were 

electrophoresed on a 4% agarose gel to visualize the number of DNA bands present. 

The molecular weight of each band was determined by comparison to known molecular 

weight markers (Fisher Scientific, no. PR-G1741, Hampton, NH).  The presence of a 

single DNA band of the correct size suggested specific amplification of the intended 

gene sequence.  In certain cases, the amplified product DNA sequence was compared 

to the published sequence.  Primer/probe amplification of genomic DNA was 

investigated using purified genomic DNA rather than cDNA as the template for QRT-



PCR.  The formation of primer dimers and spurious amplification was also investigated 

using DEPC water as a “no template” control for the QRT-PCR assay. 

Amplification efficiency of a primer/probe set was determined by a dilutional linearity 

assay, using 5 serial dilutions of the standard cDNA template and running PCR reactions 

on each dilution in replicates of 4.  Two or more versions of each target gene 

primer/probe set were designed and tested to select for both amplification efficiency and 

specificity. Similarly, each new primer/probe reagent lot was monitored to ensure 

matched amplification specificity and efficiency to previous primer/probe reagent lots.   

Target gene transcripts were analyzed by QRT-PCR for each cDNA preparation using 

2X TaqMan® Universal PCR Master Mix (Applied Biosystems, #4305719, Foster City, 

CA) and Source MDx’s proprietary primer-probe sets.   Reactions were run in sets of 

four replicates per gene (24 gene targets in a 96-well plate) on an ABI Prism® 7700 

Sequence Detection System.  Each well also contained the specific primers and probe 

set to measure 18S rRNA as an internal control.  The amount of cDNA template added 

to each reaction was held to a relatively narrow range, as determined by the cDNA 

quality control measurement of 18S RNA.  

Data analysis 
The difference between the fluorescence CT for the target gene and the endogenous 

control (18S rRNA) is presented as a ΔCT value [CT(target) – CT(control)]. For reference, 

a ΔCT of 2 is approximately equivalent to a 4-fold change in the amount of the transcript.  

For example, at baseline, TGFB may have a ΔCT value of 16, after treatment, that ΔCT 

value may increase to 18.  This change represents a 2 ΔCT difference or a decrease of 

75% (1/4).   The CT reporting system and estimation of relative gene expression is well 

described in the literature (32).  



CT values above 37 were not used in the analysis, because they correspond to gene 

expression levels below the linear range of the assay. Values over this threshold were 

obtained for varying proportions of samples, depending on the gene and the study 

population examined. For the single-time-point samples, the mean and SD of the 

underlying ΔCT distribution were inferred by maximum likelihood estimation (MLE), under 

the assumption of a normal distribution, for genes having up to 50% of their CT values 

over the threshold. Distribution parameters and dynamic ranges were not computed for 

genes with more than 50% of CT values greater than 37. 

Tests for normality 
Since ΔCT values are roughly proportional to the logarithm of the corresponding mRNA 

abundances, we used a combination of analytical methods to test ΔCT values for each 

gene for departures from normality.  

The Anderson-Darling and Shapiro-Wilk tests were used to test the data against the null 

hypothesis that the observed values were sampled from a normal distribution, 

parameterized by the observed mean and standard error. These tests differ in their 

sensitivity to outliers and in the weight given to central versus outlying values. Smaller p-

values from these tests indicate rejection of the null hypothesis, i.e., deviation from 

normality. 

We also generated plots of the quantiles of each gene’s ΔCT values against the 

corresponding quantiles of a standard normal distribution (Q-Q normal plots), together 

with histograms and normal density curves, in order to graphically characterize their 

deviations from normality. 



Linear mixed effect model analysis 
Previous reports on longitudinal gene expression data sets (16, 19) suggest that, for 

many genes, expression levels in repeated samples from the same subject are relatively 

stable compared to inter-individual differences, even when the repeat samples are 

separated by time periods of several weeks. To quantify the relative magnitudes of inter-

subject versus temporal and technical variability in apparently healthy, untreated 

subjects, we fitted a linear mixed-effects (LME) model to the longitudinal study data. In 

this data set, each ΔCT measurement was associated with a gene g, subject i, sample 

index j, and replicate k. An LME model for these data is described by equation 1: 

(ΔCT )gijk = αg + ugi + βgj + vgij + εgijk                                
 

where αg is an intercept term dependent on the gene only, ugi is a random effect due to 

inter-subject variability, βgj is a fixed effect due to systematic variations in processing 

affecting all samples drawn at the same time point, vgij is a random effect representing 

variability among samples from the same subject, and εgijk  is an error term 

encompassing all residual sources of variability between replicates. The random effects 

ugi , vgij  and εgijk are assumed to be normally distributed with mean zero and variances 

σ2
S, σ2

T, and σ2
R, respectively. A restricted maximum likelihood (REML) algorithm (33) 

was used to fit the model parameters αg, βgj, σ2
S, σ2

T, and σ2
R to the data. 

In addition, it is useful to quantify the contributions to inter-subject variability arising from 

subject characteristics such as gender, age, and ethnicity. All three of these parameters 

were recorded for 68 subjects in the single-time-point study. Expression data for these 

subjects was fitted to the LME model described by equation 2: 

(ΔCT )gik = αg + βg(Gi, Ei) +ζg(Gi, Ei)Ai  + ugi + εgik     
 



where αg is an intercept term dependent on the gene only, Gi, Ai , and Ei are the gender, 

age, and ethnicity of subject i, βg(G,E) is a gene-specific offset for the given gender and 

ethnicity, ζg(G,E) is the slope of a linear age effect depending on both gender and 

ethnicity, ugi is a random effect due to inter-subject variability not explained by age, 

gender, or ethnicity, and εgik is an error term encompassing all residual sources of 

variability between replicate PCR reactions for a given sample. After fitting this model, 

the percentage contribution of gender, age, and ethnicity effects to the inter-subject 

variance for gene g was estimated by equation 3: 

      (PC)g = 100 / (1  +σ2
S /∑ik (((predicted ΔCT )gik – (mean ΔCT)g)2 )/ (N – 1))   

 

where N is the total number of measurements for gene g, σ2
S is the variance parameter 

estimated for the distribution of the random subject effects, “predicted ΔCT“ is the value 

predicted from the fixed effects portion of equation 2, and the mean ΔCT is computed 

over all measurements for gene g. 

All data analyses were performed using the R open source programming environment 

for statistical computation (34). LME models were programmed using the R package 

“nlme” (33). 

 



Results 

Most genes exhibit limited dynamic range of expression across subjects in single-
time-point measurements 
A series of studies were undertaken to examine the expression of immune-related gene 

transcripts in whole blood of apparently healthy subjects.  In the largest single-time-point 

study, blood was collected from 131 blood donors following the American Red Cross 

donor standards and analyzed for the expression of 48 inflammation- and immune-

related gene transcripts. These transcripts encode cell surface molecules, such as CD4, 

CD14, CD19, and ICAM-1; signaling molecules, such as PTGS2 (COX2), PLA2G7, and 

NFkB; cytokines, such as IL1B and TGFB; proteinases, such as ELA2; and proteinase 

inhibitors (see Table 1). The overall range of CT values for the 48 genes studied is 

plotted in Figure 1. The bars in the plot encompass the central 90% of the observed 

values (i.e., they extend from the 5th to the 95th percentiles), whereas the “whiskers” on 

either end of the bar extend to the extreme values. For genes with expression levels 

sampled from a log-normal distribution, the ends of the bars would correspond to 1.64 

SD on either side of the mean CT.  

Of the 48 genes profiled in this study, two important signals of inflammation, IL6 and 

CXCL2, lacked detectable expression in a majority of the apparently healthy subjects, 

and their CT values were at or greater than 37. Dynamic ranges and variance 

components were not computed for these genes.  For the remaining 46 genes, the 

estimated SD of the ΔCT values ranged from 0.44 to 1.46, and was below 0.792 for 36 of 

the 46 genes, as shown in Table 1. Thus, the dynamic range of expression extending 2 

SD in either direction from the geometric mean was less than 22 * 0.792 or 3 fold change 

(32). For normally distributed ΔCT values, this range covers 95.4% of the sample 

measurements. The distribution of dynamic ranges corresponding to a ± 2 SD span is 



shown in Figure 2. The highest dynamic range observed was 7.53 fold change units for 

IL8. The SDs of ΔCT values were independent of the mean ΔCT, indicating that the 

dynamic ranges did not depend on a gene’s expression level. 

The majority of genes have expression values following log-normal distributions 
Commonly used parametric tests for differential gene expression between groups of 

samples, such as t-tests and analysis of variance, are based partly on the assumption 

that the values being compared are sampled from normal distributions. Although it is 

commonly asserted that transcription levels of many genes are log-normally distributed 

(28, 29), it is important to test this assumption in order to use such tests for disease 

diagnosis and detection. The majority of expressed transcripts followed approximately 

log-normal distributions, according to the Anderson-Darling and Shapiro-Wilk tests 

(Table 1, Figure 3). The gene most closely following a normal distribution of ΔCT values 

was IL1R1 (Figure 3A), with an Anderson-Darling p-value of 0.945. Among the 46 genes 

tested, 34 had p-values greater than 0.001. All genes had unimodal distributions; the 

deviations from normality involved moderate degrees of left or right skewness, and/or 

heavy or light tails. Although these departures were not dramatic, they will need to be 

incorporated into the predicted error rates for diagnostic tests based on expression of 

these genes. 

Of the 48 genes shown in Table I, the gene deviating most from a normal distribution of 

ΔCT values was TNFSF5 (CD40 ligand, Figure 3B), with an Anderson-Darling p-value of 

1.52 x 10-10. The observed distribution is characterized by a heavy tail and large ΔCT, 

suggesting the presence of a subpopulation with an unusually low expression level of 

this gene. 

Minor variations in expression may be based on gender, ethnicity, and age. 



Table 2 shows the contributions of gender, age, and ethnicity on inter-individual variation 

estimated by the LME model (equation 2). For the 43 genes examined, the observed 

effects of gender, ethnicity, and age were small.  Only 10 genes had contributions from 

these effects, explaining more than 20% of the inter-subject variance; the maximum 

contribution was only 27.9% for NFKB1. For most genes, gender effects accounted for 

most of this contribution. Fifteen genes showed significant gender differences 

(unadjusted p-value < 0.05), but the largest fold change from females to males was only 

1.62 for TNFSF6. Likewise, only moderate ethnicity effects were observed. Five genes 

(MPO, MYC, TNFSF6, ELA2, and HMGB1) showed significant differential expression 

between white (non-Hispanic) and Hispanic subjects, with the largest change being a 

2.5-fold over-expression of ELA2 in Hispanic females relative to white females. 

Age effects were difficult to measure in this data set, due to the markedly different age 

distributions between the female and male blood donors. Male blood donors had a 

median age of 53 years, compared to 43 years for females. Therefore, gender and age 

effects are potentially confounded. The LME model defined in equation 2 addresses the 

confounding factors by fitting the ΔCT versus age data to different slopes for each 

gender/ethnicity combination. According to the LME model, three genes (IL18, ELA2, 

and C1QA) had significant age effects for at least one gender/ethnicity combination. For 

all three of these genes, the fitted slopes were markedly different between genders. For 

example, age had virtually no effect on IL18 expression in white males, while in white 

females the slope corresponded to a 2-fold increase from age 23 to age 69. Similarly, 

the fitted slopes suggest dramatic differences in age effects among ethnicities. Overall, 

the size of the sample is too small to reliably estimate ethnic differences. 



Variation of expression within subjects over time is limited 
To compare the contributions of inter-subject, temporal, and technical components to the 

overall variation in gene expression, we fit the LME model (equation 1) to the 

longitudinal set of measurements described in Materials and Methods. For this data set, 

we fit the model for each of 29 genes with detectable expression in at least 90% of the 

samples to obtain, for each gene, a set of variance parameters σ2
S , σ2

T, and σ2
R. These 

are approximate estimates of the contributions to the total variance from inter-subject 

variation, variation among samples taken at different times from each subject, and 

residual variation between replicate reactions, respectively. 

The results of the initial LME model analysis are summarized in Figure 4, which shows 

the fitted standard error parameters σ2
S , σ2

T, and σ2
R for each gene. For 6 of the 29 

genes examined (CD19, TNFSF13B, HMOX1, C1QA, CD8A, and CD4), inter-subject 

variation comprised more than 50% of the total variance of ΔCT values. For the 

remaining 23 genes, variation between samples taken at different times was the largest 

component. However, the magnitude of the temporal variation was limited; the 

parameter σT ranged from 0.36 ΔCT units for the gene PTPRC to 0.72 ΔCT units for 

MMP9. The dynamic ranges corresponding to 2σT ranged from 1.66 to 2.72 fold change 

units. Since measurements from samples taken over a period of 8 months may be 

subject to several sources of technical variation (e.g., instrument calibration, reagent 

lots, and variations in sample handling), these ranges can be considered upper limits on 

the true temporal variation of expression for the genes analyzed. 

LPS stimulation induces transient gene expression changes in excess of natural 
variation 
To demonstrate that changes marked beyond the normal reference range occur, gene 

expression was measured in blood collected from healthy subjects injected with LPS. 

Healthy subjects who receive an injection of LPS experience mild fever and flu-like 



symptoms that subside within 24 hours (35).   The expression of a subset of genes with 

significant changes at any time point after LPS injection, are shown in Figure 5. 

Reference ranges (mean ± 2 SD) for healthy subjects are indicated by dashed lines.  

The plotted ΔΔCT values are computed relative to the mean ΔCT for the apparently 

healthy blood donors. Individual time courses are shown for each subject.  Twenty-

seven genes had significant changes in expression in LPS-injected subjects at any time 

post-infusion relative to apparently healthy blood donors, with adjusted false discovery 

rates of less than 5%.  Each of these genes had pre-injection expression levels within 

the normal reference range for apparently healthy blood donors; showed increased or 

decreased expression at 2 and/or 5 hours post-infusion; and most returned to the normal 

expression range by 21 hours after infusion. Fifteen genes increased or decreased 

expression by a factor greater than 10-fold, and two (MMP9 and IL1RN) increased more 

than 90-fold (Figure 5). Since the innate immune system’s immediate response to LPS 

infusion is the production of inflammatory mediators by monocytes, it is not surprising 

that the genes showing substantial increases in expression include cytokines and 

chemokines associated with the monocyte/macrophage lineage, such as TNF, IL1B, 

CXCL1, and IL18.   Key cell surface markers (ICAM1, CD14) and signaling molecules 

(PTGS2 / COX-2) also respond. Interestingly, the anti-inflammatory regulator IL1RN, 

which blocks the binding of IL1 to its receptor, was one of the two most “over-expressed” 

genes. This fits with the premise that inflammatory processes are tightly regulated by 

coordinated expression of pro-inflammatory and anti-inflammatory factors. These include 

genes with significant decreases in expression such as PLA2G7 and TNFSF5 (CD40 

ligand) (see figure 5). 



Discussion 

The studies reported here are an initial step toward establishing “normal reference 

ranges” for the expression of genes related to inflammation and immunity. Several key 

observations emerged: First, the dynamic range of expression of most immune response 

genes is relatively limited among apparently healthy subjects.  Second, expression 

levels for most genes analyzed are approximately log-normally distributed. Third, 

individuals exposed to bacterial endotoxin have gene expression profiles that are easily 

(albeit transiently) distinguished from those of an apparently healthy population.  In 

developing the methods for these studies, it was also observed that multiple technical 

factors, including sample handling procedures, PCR reagents, and instrument 

calibration, contribute to the overall variation, which must be carefully controlled.  Taken 

together, these observations support both the usefulness and practicality of establishing 

normal reference ranges for gene expression assays related to immune system function.  

A variety of biological factors may contribute to the variation of expression observed in 

apparently healthy subjects (18). In general, these factors can be divided into intrinsic 

(e.g., age, gender, genetics) and extrinsic factors (e.g., inflammatory, autoimmune 

disease, cancer, infections, and metabolism). The apparently healthy blood donor 

population studied here may have included individuals with sub-acute illnesses or 

chronic conditions that contributed to the variability in expression of some immune 

response genes. Many chronic inflammatory and atopic diseases, such as arthritis, 

asthma, ulcers, gastritis, and allergies are highly prevalent in the US adult population, 

with frequencies ranging from 7% to 27% (36). Nonetheless, individuals with these 

conditions are deemed “healthy” and permitted to donate blood, provided these “chronic 

conditions are bring treated and the condition is under control, and they “feel well and 

are able to perform normal activities” (30).   



Atherosclerosis is another highly prevalent condition, which develops over several years 

and is asymptomatic in its early or even late stages.  Several studies have demonstrated 

an elevation of C-reactive protein and other markers of inflammation in early stages of 

cardiovascular disease (37, 38). Chronic infections with viruses (cytomegalovirus, 

Epstein-Barr virus, genital herpes, and human papillomavirus), bacteria (Helicobacter 

pylori) and protozoans  (Toxoplasma gondii ) also are common in the US population, but 

do not consistently produce symptoms in immunocompetent persons. Periodic 

reactivation and suppression of these infections may account for some of the 

background variation in immune response gene expression. Dietary influences on 

immune system gene expression may include consumption of omega-3 fatty acids, 

arginine, and other nutrients as well as vegetarian diets (39, 40).  

Age, gender, and ethnicity also may contribute to the inter-subject variation observed for 

several transcripts.  However, the contributions of these factors appeared to be modest 

in the present study. Variations associated with age and gender, have been previously 

reported (18, 41, 42) with some gender differences being directly attributable to 

differences in sex chromosomes (18). Several studies (18, 42) have observed individual 

differences in interferon responsive genes among individuals suggesting further 

stratification in an apparently normal healthy subject group.  Larger studies specifically 

targeting some of these factors are needed to elucidate the effects so that populations 

can be stratified for more precise diagnostic resolution.  

 Intrinsic and extrinsic factors can also alter the proportions of blood cell types such as 

neutrophils, monocytes, and lymphocytes, as well as the relative expression of individual 

transcripts within each cell type.  These effects combine to produce the observed 

variation in transcript abundances in whole blood. The individual contributions of cell 



populations and gene regulation within cell types could be examined using flow 

cytometry combined with QRT-PCR, and deserve further study. 

Given the variety of factors that can affect the expression of immune response genes in 

a blood donor population, it is remarkable that the overall dynamic range of expression is 

not wider than observed in the present study, whereas larger, up to 90-fold, but transient 

changes can be induced by the severe acute inflammatory stimulus, LPS.   In other 

disease studies, such as rheumatoid arthritis and lupus differences in gene expression 

from apparently healthy normals are more modest, 2 to 5 fold (43).  These observations 

support the view that expression of these genes is maintained within limits by regulatory 

mechanisms, possibly to reduce the danger of tissue damage from constant activation of 

immune responses, while allowing appropriate responses to infectious threats. The 

limited dynamic range observed supports the development of expression-based 

diagnostics, allowing expression outside the normal reference range to indicate the 

presence of infections, cancer or indolent autoimmune diseases.

Molecular diagnostics, including those based on gene expression, are increasingly being 

applied in the clinic (44, 45).  These tests have improved the selection of therapies, as 

well as dosage and treatment schedule.  In addition, “treat-to-normal” strategies are 

routinely used in major diseases such as hypertension and diabetes.  Assays based on 

precise, quantitative measurements of immune system gene expression offer the 

promise of effective clinical monitors in infection, autoimmune diseases, other immune 

related conditions, such as transplant rejection and drug- or virus-induced 

immunosuppression, as well as cancer. A better understanding of the relevant factors 

that contribute to the individuality of gene expression in the human will help to establish 

the most appropriate normal reference values in the clinic and will serve as an essential 



step in the development of effective molecular diagnostics for these and other 

inflammatory and immunologic diseases.   
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Figures and Tables 
Table 1: Genes with detectable expression in healthy blood donor samples, together with statistical 
summaries of ΔCT distribution, expression fold changes corresponding to 2 standard deviations of 
ΔCT distribution, and p-values for normality tests. N is the number of samples having detectable 
expression for the gene in at least 3 of 4 replicate RT-PCR reactions. Mean and SD are estimated by 
maximum likelihood for genes where any replicates fall below the detection threshold (CT > 37). 

HUGO 
Designation

Gene Name and Aliases N Mean Median SD Fold Change @ 
2 SD

Shapiro-
Wilk

Anderson-
Darling

ADAM17 A Disintegrin and Metalloproteinase Domain 17 129 18.56 18.55 0.63 2.39 0.7512 0.5395
APAF1 Apoptotic Protease Activating Factor 1 131 16.46 16.48 0.54 2.13 2.1E-05 0.0150
C1QA Complement Component 1, Q Subcomponent, Alpha Polypeptide 128 20.25 20.21 0.92 3.57 0.0939 0.0879
CD14 CD14 Antigen 129 13.92 14.01 0.63 2.41 1.1E-05 8.0E-07
CD19 CD19 Antigen 131 18.19 18.09 0.78 2.94 1.4E-05 1.1E-07
CD4 CD4 Antigen 131 14.80 14.84 0.49 1.98 0.0064 3.8E-04
CD86 CD86 Anitgen; B7-2 Protein 128 17.64 17.68 0.51 2.04 3.1E-05 6.6E-04
CD8A CD8 Antigen, Alpha Polypeptide, p32 130 15.74 15.72 0.67 2.54 0.0653 0.8402
CXCL1 Chemokine (C-X-C Motif) Ligand 1 (GRO-1) 131 20.01 20.00 0.67 2.53 0.1150 0.1522
CYBB Cytochrome B-245 Beta Polypeptide 130 13.98 14.02 0.57 2.21 0.0058 0.0542
DPP4 Dipeptidylpeptidase IV (CD26) 131 18.33 18.35 0.61 2.34 0.1253 0.0602
EGR1 Early Growth Response 1 130 20.42 20.49 0.65 2.47 0.0074 0.0013
ELA2 Elastase 2, Neutrophil 126 19.90 19.78 1.29 5.95 2.1E-04 1.4E-04
GCLC Glutamate-Cysteine Ligase, Catalytic Subunit 128 18.86 18.90 0.64 2.41 5.6E-07 2.9E-05
HMGB1 High-Mobility Group Box 1 130 16.28 16.25 0.69 2.59 0.0055 0.0524
HMOX1 Heme Oxygenase (Decycling) 1 131 16.45 16.50 0.67 2.53 0.0028 0.0045
HSPA1A Heat Shock Protein 1A, 70kD 129 13.83 13.88 0.80 3.01 3.7E-08 1.2E-06
ICAM1 Intercellular Adhesion Molecule 1 131 17.68 17.71 0.55 2.15 0.0969 0.0514
IFI16 Interferon, Gamma-Inducible Protein 16 130 16.75 16.72 0.84 3.20 0.0441 0.1004
IL10 Interleukin 10 75 22.87 22.94 0.75 2.81 9.0E-04 0.0070
IL15 Interleukin 15 129 21.45 21.45 0.70 2.65 0.0051 0.0275
IL18 Interleukin 18 (Interferon Gamma-Inducing Factor) 130 20.05 20.05 0.54 2.11 0.0517 0.0625
IL18BP IL-18 Binding Protein 131 16.74 16.72 0.44 1.84 0.2787 0.6132
IL1B Interleukin 1, Beta 130 16.67 16.67 0.79 2.99 0.0011 0.0200
IL1R1 Interleukin 1 Receptor, Type I 125 21.08 21.06 0.98 3.90 0.5969 0.9508
IL1RN Interleukin 1 Receptor Antagonist 129 16.88 16.91 0.67 2.54 0.1494 0.1755
IL8 Interleukin 8 97 21.01 20.86 1.46 7.53 0.0321 0.1185
LTA Lymphotoxin, Alpha 114 20.05 19.99 0.65 2.45 3.4E-04 0.0014
MMP9 Matrix Metalloproteinase 9 129 15.91 16.01 1.16 4.97 3.8E-05 1.9E-06
MNDA Myeloid Cell Nuclear Differentiation Antigen 130 12.54 12.51 0.64 2.44 0.1193 0.1563
MPO Myeloperoxidase 131 21.20 21.22 0.77 2.92 0.7944 0.7479
MYC V-myc Avian Myelocytomatosis Viral Oncogene Homolog 130 17.23 17.22 0.63 2.38 0.0685 0.0705
NFKB1 Nuclear Factor of Kappa Light Polypeptide Gene Enhancer in B-Cells 1 (p105) 131 17.38 17.41 0.57 2.20 0.0178 0.0076
PLA2G7 Phospholipase A2, Group VII 126 19.36 19.36 0.69 2.60 0.1485 0.5492
PLAUR Plasminogen Activator, Urokinase Receptor 131 15.12 15.15 0.58 2.25 0.0275 0.0190
PTGS2 Prostaglandin-Endoperoxide Synthase 2 (COX-2) 126 16.72 16.75 0.61 2.33 0.0505 0.0309
PTPRC Protein Tyrosine Phosphatase Receptor, Type C (CD45) 127 11.91 11.96 0.52 2.07 0.0410 0.0165
SERPINA1 Serine (or Cysteine) Proteinase Inhibitor, Clade A, Member 1 (Alpha 1 Anti-Trypsin) 131 13.26 13.27 0.66 2.50 0.0100 0.0092
SERPINE1 Serine (or Cysteine) Proteinase Inhibitor, Clade E (Ovalbumin), Member 1 (Plasminogen Activator Inhibitor Type 1) 101 22.38 22.44 0.89 3.43 0.0014 0.0015
SERPING1 Serine (or Cysteine) Proteinase Inhibitor, Clade G (C1 Inhibitor), Member 1 (Angioedema, Hereditary) 130 19.20 19.29 1.20 5.25 3.2E-04 6.0E-05
TGFB1 Transforming Growth Factor, Beta 1 130 13.14 13.16 0.44 1.83 0.0115 0.0141
TIMP1 Tissue Inhibitor of Matrix Metalloproteinase 1 131 15.02 15.09 0.57 2.19 1.1E-05 4.2E-06
TLR2 Toll-Like Receptor 2 130 16.07 16.13 0.63 2.38 0.0058 0.0015
TNF Tumor Necrosis Factor 124 20.67 20.55 0.98 3.90 1.1E-05 3.4E-04
TNFSF5 Tumor Necrosis Factor (Ligand) Superfamily, Member 5 (CD40 Ligand) 131 17.69 17.67 0.63 2.38 1.5E-14 1.5E-10
TNFSF6 Tumor Necrosis Factor (Ligand) Superfamily, Member 6 (Fas Ligand) 126 20.41 20.35 0.74 2.80 4.7E-04 0.0021
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Figure 1: Gene Distribution Across 131 Healthy Donors.  Range of CT values for each gene targeted 
by the panel of 48 primer sets, across 131 single-time samples. Bars span the range from the 5th to 
the 95th percentile of CT values for each gene.   
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Figure 2: Histogram of dynamic ranges of expression values, expressed as fold changes spanning 
two standard deviations of each gene’s ΔCT values (that is, 2 –2SD(ΔC

T
 ) ). 
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Figure 3: Q-Q normal plots and histograms of  ΔCT values for the genes deviating least and most  
from a normal distribution (IL1R1 in Figure 3A and TNFSF5 in Figure 3B, respectively), according to 
the Anderson-Darling test. Unit diagonals and normal density curves are drawn on the Q-Q normal 
plots and histograms, respectively, for comparison with a normal distribution with the same mean 
and variance as observed.  P-values computed by the Anderson-Darling normality test are shown 
above each histogram. 
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Figure 4: Source of Variance in Gene Expression.  (A) Variance components estimated from mixed-
effect models, representing variation between subjects (dark grey), between longitudinal samples 
from same subject (grey), and between replicate RT-PCR reactions for same sample (white). 
Systematic variations affecting all samples drawn on same date have been subtracted before 
estimating variance components. (B) Variance components expressed as percentages relative to 
sum of components. 

 McLoughlin et al, Dynamic Range of Expression…Figures -- Page 5 



Version 8 LLNL.Normals.Figures.doc 5/2/06 

Table 2 : Gender, age and ethnicity (fixed effect) contributions to intersubject variation for 43 genes, 
in decreasing order of percentage of variance explained (equation 3). Values were computed only for 
white and Hispanic subjects for whom gender and age were recorded (N=68). Unadjusted p-values 
are shown for each effect, including interaction terms, and highlighted (together with corresponding 
fold changes) when < 0.05. Fold changes for gender and ethnicity effects are computed by raising 2 
to the power of the corresponding ΔCT effect terms; for age effects, they are computed by 
multiplying the corresponding slope effect by the range of ages in the sample (69 – 23) and then 
exponentiating. 

 

Gender Ethnicity
Gender + 
Ethnicity

Age
Gender + 

Age
Ethnicity + 

Age

Gender + 
Ethnicity + 

Age

White 
Male vs 
White 
Fem

Hisp 
Fem vs 
White 
Fem

Hisp 
Male vs 
White 
Fem

White 
Fem

White 
Male

Hisp 
Fem

Hisp 
Male

NFKB1 27.90 0.0022 0.7083 0.1098 0.3335 0.0553 0.1896 0.2572 1.35 -1.04 -1.03 -1.29 -2.48 1.32 1.43
MPO 27.74 0.0128 0.0005 0.0116 0.2260 0.3535 0.8682 0.0909 1.42 1.82 1.31 1.57 1.00 1.43 4.48
IL18 27.46 0.0220 0.6228 0.9333 0.0119 0.0468 0.9150 0.1023 1.25 1.06 1.30 1.97 -1.02 1.88 2.77
MYC 26.91 0.0180 0.0132 0.7298 0.5240 0.1344 0.9658 0.1843 1.31 -1.42 -1.17 -1.21 -2.19 -1.24 1.23
TGFB1 25.88 0.0121 0.0726 0.5024 0.5696 0.0809 0.3451 0.1967 1.22 -1.18 -1.07 -1.13 -1.84 1.21 1.47
TNFSF6 23.90 0.0008 0.0344 0.0123 0.1039 0.0892 0.8499 0.4898 1.62 1.39 1.17 1.78 -1.28 1.61 1.32
LTA 23.87 0.0179 0.8223 0.0131 0.4992 0.1109 0.9253 0.4470 1.32 -1.03 -1.33 -1.22 -2.32 -1.17 -1.27
ELA2 23.65 0.3536 0.0013 0.0998 0.0262 0.2949 0.1695 0.0889 1.24 2.53 1.50 4.21 1.78 1.09 6.94
CD86 21.03 0.0289 0.2781 0.4782 0.1418 0.1509 0.3672 0.3403 1.24 1.13 1.23 1.47 -1.11 2.12 2.42
CD14 20.75 0.0066 0.9157 0.1150 0.1484 0.4972 0.0631 0.6869 1.42 -1.02 -1.05 -1.65 -2.24 1.64 1.71
C1QA 19.11 0.9650 0.2648 0.7856 0.0458 0.1489 0.0286 0.0015 1.01 1.25 1.15 2.51 1.07 -1.89 9.27
GCLC 19.04 0.1281 0.0510 0.4470 0.1961 0.5864 0.4943 0.1936 1.19 1.31 1.33 1.51 1.21 2.10 -1.66
HSPA1A 18.91 0.0208 0.3329 0.8448 0.2111 0.5560 0.1404 0.3747 1.37 -1.17 1.12 -1.58 -2.09 1.46 2.47
TNF 18.22 0.0489 0.6451 0.2638 0.6774 0.8716 0.0660 0.4877 1.44 -1.11 -1.14 -1.23 -1.11 3.34 1.59
HMGB1 17.72 0.0630 0.0047 0.1891 0.2164 0.3968 0.6109 0.9320 1.24 1.50 1.39 1.48 1.05 1.16 -1.31
CYBB 17.34 0.0223 0.9489 0.3272 0.9352 0.2462 0.1217 0.5252 1.31 -1.01 1.05 1.03 -1.56 2.17 2.22
SERPINA1 17.27 0.0730 0.2471 0.9965 0.2167 0.5933 0.0938 0.5365 1.28 -1.21 1.06 -1.59 -2.06 1.66 2.28
MMP9 16.14 0.1858 0.1057 0.3289 0.1730 0.6537 0.5372 0.3199 1.36 -1.57 1.34 -2.39 -3.46 -1.31 2.56
CXCL1 15.91 0.1965 0.1305 0.5228 0.3722 0.4229 0.1961 0.4267 1.18 -1.26 1.09 -1.36 -1.94 1.46 2.02
EGR1 15.53 0.0263 0.3387 0.4572 0.2550 0.0909 0.6418 0.2217 1.33 -1.15 -1.04 1.48 -1.44 1.16 1.54
IL15 15.44 0.4922 0.0501 0.0862 0.3364 0.9222 0.3302 0.2744 1.10 1.37 -1.03 1.42 1.36 2.45 -1.15
DPP4 15.00 0.2114 0.4354 0.4450 0.1223 0.6509 0.1781 0.5079 1.15 -1.11 -1.14 -1.63 -1.95 1.18 -1.70
CD4 14.86 0.0816 0.4197 0.3359 0.9445 0.0935 0.4285 0.4223 1.19 -1.10 -1.11 1.02 -1.77 1.42 1.34
HMOX1 14.81 0.0587 0.8654 0.6194 0.2167 0.0801 0.9441 0.0954 1.27 -1.03 1.10 1.53 -1.44 1.59 3.05
PLA2G7 14.20 0.0865 0.9282 0.7051 0.4431 0.8269 0.0575 0.6794 1.27 1.02 1.17 -1.34 -1.49 2.31 3.07
PLAUR 13.46 0.2046 0.4947 0.9590 0.4582 0.2254 0.6593 0.1645 1.17 -1.10 1.07 -1.28 -2.15 -1.02 1.83
TIMP1 13.33 0.0658 0.5106 0.2000 0.4669 0.1399 0.8392 0.3714 1.23 -1.09 -1.17 1.25 -1.44 1.37 1.51
CD8A 13.23 0.0412 0.1604 0.8832 0.2939 0.7299 0.4394 0.8534 1.30 1.24 1.56 -1.44 -1.24 1.05 1.44
ADAM17 12.71 0.1919 0.8616 0.6441 0.1633 0.2687 0.7874 0.7724 1.15 1.02 1.29 1.49 -1.01 1.68 1.37
PTPRC 12.65 0.0279 0.7490 0.7072 0.5853 0.4100 0.2291 0.5759 1.24 1.04 1.20 -1.15 -1.53 1.41 1.53
PTGS2 12.55 0.0630 0.9846 0.6788 0.0812 0.9289 0.1552 0.9724 1.28 -1.00 1.15 -1.87 -1.79 1.17 1.18
IL1RN 12.41 0.3848 0.0842 0.1495 0.1451 0.6460 0.1061 0.8547 -1.13 -1.33 -1.03 -1.73 -1.38 1.48 2.18
ICAM1 11.99 0.2755 0.2793 0.7173 0.4375 0.4882 0.2839 0.3328 1.13 -1.16 1.06 -1.27 -1.68 1.31 2.10
APAF1 11.91 0.0852 0.8732 0.8466 0.8508 0.4636 0.0957 0.6159 1.20 -1.02 1.13 -1.05 -1.38 1.96 1.06
MNDA 11.64 0.0662 0.9441 0.3044 0.5092 0.6863 0.3526 0.3483 1.24 -1.01 -1.03 -1.23 -1.46 1.28 2.29
IL18BP 10.94 0.1220 0.0913 0.1308 0.6556 0.3362 0.4393 0.4857 1.14 1.18 1.06 1.11 -1.20 1.45 1.62
SERPING1 10.70 0.4339 0.2313 0.9868 0.5224 0.9825 0.7008 0.2993 -1.21 -1.41 -1.69 -1.52 -1.49 -1.03 5.36
IL1R1 10.49 0.1039 0.7632 0.9654 0.7602 0.3975 0.2078 0.9550 1.34 -1.07 1.28 -1.16 -2.00 2.25 1.40
IL1B 10.09 0.6746 0.3584 0.4113 0.3254 0.7338 0.1561 0.9919 -1.07 -1.19 1.01 -1.52 -1.84 1.68 1.40
TLR2 9.82 0.2787 0.6278 0.5153 0.7197 0.1332 0.2841 0.8863 1.15 1.08 1.06 1.14 -1.77 2.05 1.16
TNFSF5 9.48 0.3867 0.3648 0.1478 0.0599 0.4390 0.3545 0.6951 1.12 1.16 -1.12 -2.01 -1.39 -1.19 -1.18
IFI16 6.46 0.5860 0.6442 0.5085 0.2437 0.8924 0.4439 0.9634 1.09 1.09 -1.02 -1.62 -1.74 1.00 -1.02
CD19 5.24 0.1827 0.4304 0.1925 0.3513 0.1437 0.4404 0.5098 1.23 1.16 -1.03 1.48 -1.51 -1.11 -1.25

Gene

% of 
Variance 
Explained by 
Gender, Age, 
and Ethnicity

Fold Change Corresponding 
to Age Difference (69 vs 23)

Fold Change Corresponding 
to Effect

p-Values for Effect
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Figure 5: Time course of expression for 12 genes with significant responses to LPS infusion in 3 
healthy male subjects.  Whole blood was sampled at pre-LPS (0h), 2, 5 and 21 hours post-LPS 
infusion.  Gene expression is plotted as ΔCT values relative to mean ΔCT for healthy blood donors, 
with points and lines colored by subject. Mean and mean +/- 2 SD are indicated by horizontal dashed 
lines. ΔCT scale is inverted, so that upward direction corresponds to increasing expression. 
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